
1 - FONCTION ETANCHEITE.

Soit deux solides S1 et S2 (voir schéma ci-contre) possédant des surfaces de contact communes, séparant deux milieux contenant des fluides distincts et/ou ayant des pressions différentes.

Le dispositif d'étanchéité doit :

- empécher les impuretés du milieu extérieur d'accéder aux surfaces à protéger.
- empécher le fluide de s'échapper vers le milieu extérieur.

(Les flèches symbolisent ces deux types de fuites)

TATE DEUX MI

2 - TYPES D'ETANCHEITE.

Selon la liaison (fixe ou mobile) entre les deux solides S1 et S2, on distingue les types d'étanchéités suivantes :

Mouvement relatif S1/S2	Type d'étanchéité à réaliser	
Fixe	Etanchéité STATIQUE	
Mobile en Rotation	Etanchéité DYNAMIQUE	
Mobile en Translation	Etanchéité DYNAMIQUE	

2-1 Etanchéité statique:

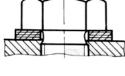
• Par contact direct

Etanchéité assurée uniquement par l'état des surfaces en contact entre S1 et S2, sans élément d'étanchéité supplémentaire (sans joint). Cette étanchéité peut être réalisée soit :

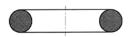
- En rodant les surfaces de contact à lier l'une sur l'autre afin d'obtenir des états de surfaces parfaits.

Exemple: Raccord à joint cônique

- En utilisant un produit de collage et d'étanchéité. Cette solution est cependant onéreuse.
- Par interposition d'un joint (étanchéité indirecte)


Etanchéité réalisée en interposant entre les deux surfaces à étancher un joint de commerce. Il peut s'agir :

- joint plat:

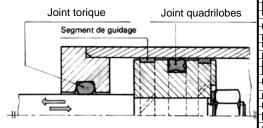


- joint torique:

2-2 Etanchéité dynamique:

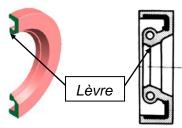
Les technologies mises en œuvre dépendent des mouvements relatifs entre les deux pièces.

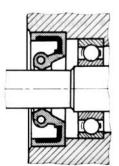
• cas d'une translation :


Dans ce cas, on utilise des joints toriques ou de section sensiblement carrée :

- joint torique à section circulaire:

- joint quadrilobes (section « carrée »):



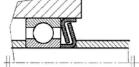


• cas d'une rotation :

On peut utiliser un joint torique lorsque la vitesse de rotation reste faible. Lorsque la vitesse de rotation est importante, on utilise un joint à lèvre :

- joint à lèvre à frottement radial :

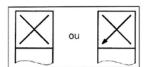
- joint à lèvre à frottement axial (Joint V. RING) :



On peut également dans certain cas, prévoir une étanchéité sans frottement avec les pièces, exemples :

- par chicanes

- par rondelles « Z »:



3 - SYMBOLISATION DES JOINTS A LEVRES.

3-1 Représentation générale:

Dans tous les cas, le contour exact du joint est représenté par un rectangle.

La croix centrale, peut être complétée par une flèche indiquant l'étanchéité principale assurée.

3-2 Représentation particulière :

Joint d'étanchéité à lèvre à frottement radial		Joint d'etanchéité à lèvre à frottement radial + lèvre		Joint d'étanchéité à lèvre à frottement axial (V. RING)	
Symbole	Rep. réelle	Symbole Rep. réell		Symbole	Rep. réelle
ou		Ou Ou		ou \	